
Syllabus
lunedì, luglio 17, 2017
5:05

Access control modifiers
Tuesday, July 18, 2017
18:03

Nested classes
Tuesday, July 18, 2017
17:48

Summary

Types
• Static

o Indipendent: can be instantiated without creating the outer class
o Can only access static members of the enclosing class
o Can have any visibility

• Inner
o An instance of the inner class is associated with an instance of the outer one

• The inner one can access non-static members of the outer one
o The inner class instance has only one pointer to the outer class instance

• One outer class can be referred by multiple inner class instances
o Non-static member (the default "inner class")

• The inner class can be accessed by A.B
• It can have any visibility
• Construction

• Accessing the enclosing class

• Local

 Declared inside a method
 Two types: behaves differently depending on where it's defined

<<ilc.jav
a>>

• Anonymous
 Declared inside a method, without naming the class
 Example

 Constructors

• Shell: reset && javac ac.java && java Main
• Output: What's printed

<<ac.jav
a>>

Concurrency
Wednesday, July 19, 2017
17:56

Definitions
• Concurrency: two or more activities carried out at the same time

• Distribution: different activities are carried out concurrently on different machines that communicate
through a network

Precedence graph
Graph that shows the order of
activities.
• Job repartition to workers

can be done by dividing the
precedence graph in subsets
of adjacent activities.

Partially Ordered SET (POSET)

• Total order relationship
When a partial order exists for each pair of activities.

Concurrent activities

Different types of concurrency
True concurrency [Interleaving] concurrency

Parallelized programs' speedup
• Two laws for the same thing

o Amdahl's law
o Gustafson's law

• CPU clock cannot be increased without limits due to physical constraints
o That's why parallelism is exploited

• Notation
o
o

•


•



•

o

•
This is the superlinear (theoretical) speedup:

•



• Real-life scenarios
 Speedup will decrease after a certain point, because of:

• Overhead due to context switches
• Overhead due to communication among workers

 Superlinear speedups can still happen thanks to shared caches in multiprocessors.

• No overhead due to communication
o Gustafson's law

•
•



•

onenote:#Concurrency§ion-id=%7B469F56A8-1A6C-4CC1-ABDC-DE81D3EF5931%7D&page-id=%7BF4AD5063-CBD3-4765-800E-A3B783B2006A%7D&object-id=%7B618A362D-FD29-49F9-8B0E-C080A109F709%7D&CE&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Concurrent%20and%20distribuited%252


•

•

•

Useful design patterns
Thursday, July 20, 2017
15:41

• Factory pattern
Instead of invoking a constructor, the object creations is delegated to a Factory object.

// Starting objects

interface MyInterface {

// Interfaces provide information hiding, the created
// object can be of any type (that implements this interface)

// ...

}

class MyObject implements MyInterface {

// ...

}

// Factory

class MyFactory {

// ...

public static MyInterface createMyObject() {

// ...

return x; // x instanceof MyObject
}

}

// Usage

MyInterface a = MyFactory.createMyObject();

• Singleton pattern
Special class for which only up to one instance at a time can exist.
o Possible thanks to private constructors
o With one just class: two possible initializations

o With another class that provides the instance of the singleton
• Static provider

• Non-static provider

Mutual exclusion
Wednesday, July 19, 2017
19:31

Shared-memory systems
• Multiple workers carry out some activities interacting with each other by using a common memory
• Cache coherence protocols are needed

Mutual exclusion
• When multiple workers try to modify the same memory location, a race condition occurs
• Critical section: the portions of code in which a shared resource is accessed are executed in mutual

exclusion by processors.
o In a single-processor environment, can be guaranteed by disabling interrupts, but it's inefficient for

long critical sections.
• Mutual exclusion properties

o Safety: only one process at the time can access the critical section
o Liveness: eventually, all the processes requiring access to a critical section, will obtain it.

It prevents:
• Deadlock
• Starvation

o Fairness: processes acquire the lock in the same order they required it.
It prevents starvation.

volatile
Friday, July 21, 2017
17:22

What it means
"Variable which might be accessed by other processes".

What does it do
• It flushes everyone's cache when the variable is modified, so all the other parties will see the

freshest version of the data.
• Atomic reads/writes (not increments and swaps) on all primitive variables.

https://docs.oracle.com/javase/tutorial/essential/concurrency/atomic.html

o Reads and writes are already atomic on all primitive variables, except for lond and double
types: in order for them to have atomic reads and writes, they will need the volatile
keyword.
• This means that changes to a volatile variable are always visible to other threads.

o Increments and swaps are not atomic, even whit the volatile keyword:

volatile int i = 0;

void incBy5() {

i += 5;
}

If two threads read the the i variable at the same time, the final result will be 5 instead of 10.

Flags and turns
Thursday, July 20, 2017
12:13

Solutions to the mutual exclusion problem

Solution 1: boolean variable
volatile boolean free = true;

// prologue
while(!free);
free = false;

// critical section

// epilogue
free = true;

volatile keyword
"Variable which might be accessed by other processes".
It tells the compiler not to perform optimizations (while(false)) on portions of code
containing that variable.

Problem: mutual exclusion not guaranteed
Two processors may read the free variable at the same time.
This variable should be read and written in an uninterruptible fashion.

Solution 2: flags
• A flag for each process

volatile boolean flag0 = false; // true if P0 in critical section
volatile boolean flag1 = false;

onenote:#volatile§ion-id=%7B469F56A8-1A6C-4CC1-ABDC-DE81D3EF5931%7D&page-id=%7BB5B791D1-A771-4382-A1D4-5340CA79C580%7D&end&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Concurrent%20and%20distribuited%20systems/Bechini.one

// Process P0
flag0 = true;
while(flag1);

// critical section

flag0 = false;

// Process P1
flag1 = true;
while(flag0);

// critical section

flag1 = false;

Problem: deadlock
If both processors set their flag subsequently.

Solution 3: turns
• Each process waits for its turn to access the critical section
• Once finished, it will pass the turn to the next process

volatile int turn = 0; // when = 0, it's P0's turn

// Process P0
while(turn != 0);

// critical section

turn = 1;

// Process P1
while(turn != 1);

// critical section

turn = 0;

Problem: always the same order
A process can't access the critical section twice subsequently.

Solution 4: Peterson's solution
• Correct solution with flags and turns

volatile int turn = 0; // when = 0, it's P0's turn
volatile boolean flag0 = false; // true if P0 in critical section
volatile boolean flag1 = false;

// Process P0
flag0 = true;
turn = 1; // says that it's P1's turn
while(flag1 && turn == 1);

// critical section

flag0 = false;

// Process P1
flag1 = true;
turn = 0; // says that it's P0's turn
while(flag0 && turn == 0);

// critical section

flag1 = false;

• The last process that modifies the turn variable spins.

Correctness proof by contradiction

https://en.wikipedia.org/wiki/Peterson%27s_algorithm
https://en.wikipedia.org/wiki/Peterson%27s_algorithm#Mutual_exclusion

• Contradiction: both P0 and P1 are inside the critical section
• Both flag0 and flag1 are set true durong the pologue
• Suppose P0 entered first: turn must be 0, otherwise P0 wouldn't have passed the

while() check
o

Locks
Thursday, July 20, 2017

Target
public interface Lock {

void lock();
void unlock();

// Other methods
Condition newCondition();
boolean tryLock();
boolean tryLock(long time, TimeUnit unit);
void lockInterruptibly();

}

public class MyLock implements Lock {

// Actual lock/unlock implementations
@Override
public void lock() throws … {…};

@Override
public void unlock() {…};

// If no clue about the others
@Override
public Condition newCondition() {

throw new java.lang.UnsupportedOperationException();
}

// etc...

}

Lock l = new MyLock();

try {

l.lock(); // prologue

// critical section

} finally { // exceptions won't deny the unlock
l.unlock(); // epilogue

}

 Bakery's algorithm
• Inspired by ticket-based queues

o
• Works with multiple threads
•

o In case two processes acquire the same ticket.
• Steps

o Process fetches a ticket (max ticket number + 1)
• It can happen that two processes acquire the same ticket.

In this case, the process with the lower ID wins.

•

• Code

<<Bakery.jav
a>>

• Lower ticket wins
• Same ticket? Lower PID wins

Hardware solutions
Thursday, July 20, 2017
14:36

• Testing and acquiring actions must be perfomed atomically

• Test and set

int test_and_set(int* p, int new_val) {
int old_val = *p;
*p = new_val;
return old_val;

}

void lock(int* p) {
// Writes 1 in the lock in any case
while(test_and_set(p, 1) == 1);

}

void unlock(int* p) {
// Reading is useless
*p = 0;

}
o Not fair: the acquisition order may be random (if more than one process tries to acquire the lock

simultaneously).
With a random acquisition order, starvation could still happen, but with a negligible probability.

• Compare and swap
o Writes new_val only if old_val == exp_val (passed as parameter)

int compare_and_swap(int* p, int exp_val, int new_val) {
int old_val = *p;
if(old_val == exp_val) // writes conditionally

*p = new_val;
return old_val;

}

void lock(int* p) {
// Sets the lock to 1 only if it was equal to 0
while(compare_and_swap(p, 0, 1) == 1);

}

void unlock(int* p) {
*p = 0;

}
o Same problem as the test and set

o Fetch and add
o Atomic increment

int fetch_and_add(int* p) {
int old_val = *p;
*p = old_val + 1;
return old_val;

}
o Can be used to implement a ticket-based locking solution, similar to the Bakery algorithm

record lock_t {
int ticket_number; // next free ticket (for queueing)
int turn; // who has to be served

}

void lock_init(lock_t* l) {
 l->ticket_number = 0;
 l->turn = 0;
}

onenote:#Hardware%20solutions§ion-id=%7B469F56A8-1A6C-4CC1-ABDC-DE81D3EF5931%7D&page-id=%7B117C92AA-839A-4DE0-8098-EECF22A9D4FA%7D&object-id=%7B430F082D-E3DB-4B1C-BBA6-11A2237F64ED%7D&15&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Concurrent%20and%20distr
onenote:#Locks§ion-id=%7B469F56A8-1A6C-4CC1-ABDC-DE81D3EF5931%7D&page-id=%7B625977EC-D6EB-4A9C-9A3E-84B7FCB7CEE2%7D&object-id=%7B8E08DC42-DDAB-462D-A987-E8F528D2C110%7D&1C&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Concurrent%20and%20distribuited%20syste

void lock(lock_t* l) {
 int my_turn = fetch_and_add(&(l->ticket_number));
 while(l->turn != my_turn);
}

void unlock(lock_t* l) {
 fetch_and_add(&(l->turn));
}

o Fair: processes acquire the lock in the same order they required it.

Spinning and sleeping locks
Thursday, July 20, 2017
15:26

General lock acquisition scheme
while(!acquire(lock)) {

<waiting algorithm>
}

// critical section

release(lock);

• The waiting algorithm defines the lock type

o Spinning lock: no operation
• Busy waiting wastes CPU cycles
• Good for short critical sections

o Sleeping lock: yield(), changes the process state from running to ready
• They involve context switches
• Acquiring latency
• FIFO queues containing blocked processes' PIDs to provide fairness

o 2-phases lock: hybrid between spinning and sleeping locks
• At first, process spins
• After a timeout, process suspends itself
• Barging: when fairness is not mandatory, it's better to wake up spinning processes rather

than sleeping ones.

Condition variables
Friday, July 21, 2017
14:17

• Objects that represent conditions on which processes may block themselves, waiting from some
event to occur
o Logical conditions. If true, the process is allowed to continue its execution

• Condition interface
o Associated with locks, thanks to the Lock::newCondition() method

• A thread must holding the corresponding lock, before waiting on a condition
o Methods

• await(): the invoker blocks on that condition
• notify(): unblocks a thread blocked on that condition
• notifyAll(): unblocks all threads block on that condition

Producer-Consumer problem
• With just one variable (buffer has only one data location)
• Look at the Java documentation guide

Javadoc's example
• Conditions provide a means for one thread to wait until notified by another thread that some state

condition may now be true.
The notifying thread knows when the codition becomes true or not, so that's why condition variable
names describe the condition state once it's possible to notify.

class BoundedBuffer {
final Lock lock = new ReentrantLock();
final Condition notFull = lock.newCondition();
final Condition notEmpty = lock.newCondition();

final Object[] items = new Object[100];
int putptr, takeptr, count;

public void put(Object x)
throws InterruptedException

{
lock.lock();

try {

while(count ==
items.length)

// waits until it's
notFull again
notFull.await();

items[putptr] = x;
if(++putptr ==
items.length)

public Object take()
throws InterruptedException

{
lock.lock();

try {

while(count == 0)
// waits until it's
notEmpty again
notEmpty.await();

Object x = items[takeptr];
if(++takeptr ==
items.length)

takeptr = 0;

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/Condition.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/Condition.html

putptr = 0;
++count;

// indicating that buffer
is "notEmpty"
notEmpty.signal();

} finally {
lock.unlock();

}
}

--count;

// indicating that buffer
is "notFull"
notFull.signal();
return x;

} finally {
lock.unlock();

}
}

Bounded buffer example
• Producer-Consumer problem with multiple variables (bounded buffer)

o CDS_02_BOUNDEDBUFFER (Lab2)

Synchronized vs Condition variables
 Synchronized Condition variables

Who's waked up All threads Only possibly interested threads

Fairness No fairness policy can be declared The ReentrantLock() constructor accepts
an optional fairness parameter: if set to
true, the lock favors granting access to the
longest-waiting thread.

Counting semaphores
Friday, July 21, 2017
17:50

What are they
• Lock generalization
• Difference:

o A lock allows up to one process to enter a critical section
o A counting semaphores allows N concurrent accesses

In Java
• Class Semaphore
• The constructor requires two parameters:

o Number N (permits) of threads that can access the critical section concurrently
o Fairness (FIFO granting of permits)

• acquire()
• release()

Bounded buffer example
• Producer-Consumer problem with multiple variables (bounded buffer)

o CDS_02_BOUNDEDBUFFER (Lab2)
• Code

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Semaphore.html#Semaphore(int,%20boolean)

Mutual exclusion in Java

Packages
java.util.concurrent
java.util.concurrent.locks
java.util.concurrent.atomic

Lock interface
Used to define some custom locking policy.

Pre-existing locking solutions
• Do not provide fairness by default: they use barging

o Still possible to avoid barging thanks to some arguments in the constructor
• tryLock(): a thread tries to acquire a lock until a timer fires
• isLocked()

• ReentrantLock class

o Solves the problem of a thread that tries to acquire a lock it already has.
The locking operation just does nothing.

• Amotic standard data types
o CDS_01_DATARACE (Lab1, explained here)
o They allow atomic read and write operations
o AtomicInteger class

• getAndSet()
• compareAndSet()

Returns:
 true if the old value was equal to the expected value
 false if the old value was different to the expected value (so it won't write the new

value)
• getAndAdd()
• …

Lab1 explained
Friday, July 21, 2017
11:29

• SharedCounter: interface representing how a counter should be implemented

o The actual counter class (static nested classes inside the program class) changes in every program
• ThreadSeqID: class that gives threads a sequential ID, just for convenience

• Competitor: thread that tries to get the counter value for 10 times.

The actual counter class almost always implements the get() method as a getAndIncrement() value (that
returns the old value).
So basically, competitors increment the timer 10 times.

onenote:#Spinning%20and%20sleeping%20locks§ion-id=%7B469F56A8-1A6C-4CC1-ABDC-DE81D3EF5931%7D&page-id=%7B5D71F3B8-26A6-43DF-BCD2-009C21A8A492%7D&object-id=%7B2849A8BE-C4CD-4DAA-B6A3-D0CE6FED32C7%7D&C1&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Concurrent%25
onenote:#Lab1%20explained§ion-id=%7B469F56A8-1A6C-4CC1-ABDC-DE81D3EF5931%7D&page-id=%7B07644147-73F9-40E0-8784-4C89BA2D315A%7D&end&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Concurrent%20and%20distribuited%20systems/Bechini.one

Examples
• CdsDataRace01: this implements a counter (as a static nested class) with just an integer. This solution is

not thread-safe because the read and write operations on the counter are not performed atomically.
o CdsDataRace01Fixed: this implements a counter that uses the AtomicInteger class, so it works.

• CdsDataRace02: this implements a counter whose variable has the ThreadLocal<Integer> type. This
means that each thread sees its own variables, so at the end every thread counts from 1 to 10
(displaying from 0 to 9, precedent values) just as they had their own private variables.

• CdsDataRace03: two threads (just two because they use the Peterson's lock solution) try to modify a map
data structure.
o The competitor this time has a different run method, that's why another class is used:

CompetitorMap
• They just insert a random integer from 0 to MAXELEMS (value = key in this example) if the

element indexed by key is empty; otherwise, they remove it.
o In this example, the Peterson's lock solution is implemented correctly so everything works fine.

Monitors
Friday, July 21, 2017
18:41

• Lock + condition

1. Hoare's monitor

o Components
• Lock that protects critical section
• 1 blocking enter queue

 A process/thread blocks itself when the initial lock is occupied
• More blocking condition queues

 A process/thread blocks itself when a particular condition is not satisfied
 A process/thread before blocking itself on a conditions, it frees the lock ("exits the

monitor"), allowing other processes/threads to enter
o Once a thread inside the monitor invokes a signal()

• It can wait on the enter queue and let the new thread come in (signal and wait)
 It can wait on an urgent queue and let the new thread come in (signal and urgent

wait).
This urgent queue has higher priority than the normal enter queue

• It can leave the monitor and let the new thread come in (signal and return)
2. Mesa style monitor

o Once a thread inside the monitor invokes a signal()
• It continues its execution while the freed process is moved to the enter queue (signal and

continue)
• This avoids context switches
• The condition may change again while the freed process waits in the enter queue, so the

contidion must be tested again before entering

onenote:#Flags%20and%20turns§ion-id=%7B469F56A8-1A6C-4CC1-ABDC-DE81D3EF5931%7D&page-id=%7B7C2C96AF-D9FC-4306-AACE-D21C3E5F39F8%7D&object-id=%7B57B1FC13-461F-4496-A956-286806B08B54%7D&C9&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Concurrent%20and%20distri
onenote:#Flags%20and%20turns§ion-id=%7B469F56A8-1A6C-4CC1-ABDC-DE81D3EF5931%7D&page-id=%7B7C2C96AF-D9FC-4306-AACE-D21C3E5F39F8%7D&object-id=%7B57B1FC13-461F-4496-A956-286806B08B54%7D&C9&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Concurrent%20and%20distri

Java monitors
Tuesday, September 12, 2017
10:39

• Mesa style
o Once a thread inside the monitor invokes a signal() it continues its execution while the freed

process is moved to the enter queue (signal and continue)
• There's only one condition queue, regardless of the actual number of logical conditions

o notifyAll() method
o Waking up all processes creates a lot of overhead

• Explicit locks + condition variables are more efficient
o Each Object has a monitor associated to it

o Therefore each Object provides methods like wait(), notify() and notifyAll()
o synchronized refers to an object istance

public synchronized void method() {
// ...

}

public void method() {
synchronized(this) {

// ...
}

}
o It can be done also for classes

synchronized(x.class) {
// ...

}

• Java Reflection paradigm: each class is associated to a Class object

Collections
Saturday, September 23, 2017
18:12

Java Collection framework
• Set of classes that implement in efficient way common data structures
• Also called Containers

o Group containers: group of objects
o Associative containers: <key, value> pairs

• Set<E>: no duplicates
• Queue<E>: duplicates; sorted according to some rules

o compareTo(Object o)
o A ClassCastException might be generated

• List<E>: duplicates; no order

Iterating over a Collection
• Standard while/for loop
• foreach

o Associative containers (e.g.: Map) should be converted into a group container with this
for(MyElement me : myMap.values()) { ... }

• Iterators
o Iterator is an interface
o Example:

Iterator<MyElement> i = myCollection.iterator();
while(i.hasNext()) {

MyElement me = i.next();
// ...

}
o It's unsafe to modify a collection while iterating over it (ConcurrentModificationException)

unless appropriate methods are used (add() and remove())

Thread-safe collections
Saturday, September 23, 2017
19:30

• Collections are not thread-safe

Reader-Writers problem (Java's ReadWriteLock)
• Shared resource
• Concurrent reads are allowed

• During a write, no other operations are allowed
• Lock for both reading/writing: not optimal
• Simple lock solution

o Structure
• Lock l: protects the two following variables

 int r: number of processes currently reading
 boolean w: true when a process is writing

• Condition c
o Reading

l.lock();
while(w == true)

c.await();
++r;
l.unlock();

// reading

l.lock();
--r;
if(r == 0)

c.notify();
l.unlock();

o Writing

l.lock();
while(w == true || r > 0)

c.await();
w = true;
l.unlock();

// writing

l.lock();
w = false;
c.notify();
l.unlock();

o Problem: lots of readers could cause writers starvation
• Java's ReadWriteLock interface

o readLock() returns a Lock for reading
• This lock can be held by more processes at the time

o writeLock() returns a Lock for writing
• This lock is exclusive

o Usage

rwl.readLock().lock();

// reading

rwl.readLock().unlock;

rwl.writeLock().lock();

// writing

rwl.readLock().unlock;

Executor
Sunday, September 24, 2017
17:12

• Task
o What is done by threads

• Thread constructor argument
o Can implement the Runnable Interface

• run() method
• No return

o Can be a Callable object
• Allows to return a value
• When this object is submitted to a thread pool, a Future<T> object is returned and it's

used to check the state of the execution
• Thread pool

o Threads fetch tasks from a Job queue

Frameworks
• Executor

o Provides an interface through which a task can be executed with execute(Runnable task)
• The task execution is delegated to the framework
• Just Runnable objects

• ExecutorService
o Executor extension
o Both Runnable and Callable objects
o Additional methods

• submit() returns a Future object, to check the execution state
• shutdown() waits for a task currently in execution to be completed before shutting down

(it could take time)
• shutdownNow() kills possible running tasks

o Instantiated with Executors.newFixedThreadPool(int n), creating a thread pool
• Thread pool size

 Too many will waste lot of resources and will cause too many context switches
 Optimal number: #cores/CPUs

• ScheduledExecutorService
o Allows

• Delayed threads
• Periodical threads

o Instantiated with Executors.newScheduledThreadPool(int n), creating a thread pool

o Methods
• schedule(Runnable/Callable task, long delay, …)
• scheduleAtFixedRate(

Runnable task,
long initialDelay,
long period, …

)
 Next execution starts after period ms after the start of the current task

• scheduleWithConstantDelay(
Runnable task,
long initialDelay,
long delay, …

)
 Next execution starts after delay ms after the end of the current task

Double-check locking
Sunday, September 24, 2017
16:27

• Classing Singletons don't work in multithreaded environments because 2 thread could reach the if
statement concurrently and create two instances

class MySingletonPlace {
private MySingleton x;

public MySingleton getSingleton() {

if(x == null)
x = new MySingleton();

return x;
}

}

• First solution: x variable protected in mutual exclusion with a synchronized block

class MySingletonPlace {
private MySingleton x;

public MySingleton getSingleton() {

synchronized(this) {
if(x == null)

x = new MySingleton();
}

return x;

}
o Not optimal: threads will have to acquire the lock even just to check that x != null

• Second solution: threads won't have to acquire the lock if the instance already exists

class MySingletonPlace {
private MySingleton x;

public MySingleton getSingleton() {
if(x == null) { // First check: avoids acquiring a lock if the instance already
exists

synchronized(this) {
if(x == null) // Double check: w/o this, still 2 instances could be
created

x = new MySingleton();
}

}

return x;

}

• Another thread may acquire the instance before its construction ends, obtaining a reference to
an object in an inconsistent state

• This could be solved declaring the Singleton volatile
• It's not efficient because the JVM avoids performing optimizations
• A non-volatile temprary support variable could solve this proble

class MySingletonPlace {
private volatile MySingleton x;

public MySingleton getSingleton() {

MySingleton temp = x;

if(temp == null) { // check on temp 'cause it's more performant

synchronized(this) {
temp = x; // someone could have updated x
if(temp == null)

x = temp = new MySingleton();
}

}

return temp;

}

• Most of the time, temp is already initialized
• The volatile variable x is accessed only once (first assignment) because of the

"return temp;" instead of "return x;"

Nonblocking algorithms
Sunday, September 24, 2017
18:51

• Alternative to lock-based algorithms
• Using no locks

o Improves concurrency
o Avoids deadlocks

CAS and nonblocking counter

Sunday, September 24, 2017
18:54

• CAS

• Solution provided by the JavaAtomicInteger class

public class NBCounter {
private AtomicInteger count;

public int increment() {

int v;

do {

v = count.get();
}
/* compareAndSet() returns false (and hence the
 loop continues) if v is not the current value
 in count. This happens when someone else has
 modified count. */
while(!count.compareAndSet(v, v + 1));

}

// Getter
public int getCount() { return count.get(); }

}

ABA problem
Monday, September 25, 2017
10:05

1.
2.

3.

4.

•

o An object removed and then insterted again in a queue should be pointed by the same pointer for
optimization

o
• A compareAndSet() succeeds, but it should fail instead
• Solution: "modified" counter

o Doesn't work when counter overflows, it should be large enough

Treiber's stack
Sunday, September 24, 2017
19:10

• Non blocking solution for shared stacks
• Stack elements: Node<E>

o Every element has a pointer to the next one
o The stack itself is a pointer to the first element (top)

• Implemented by AtomicReference<Node<E>>, which is an Atomic Reference to
something (to Node<E> objects)

• Code

public class TreiberStack<E> {
AtomicReference<Node<E>> top = new AtomicReference();

/* Private static data structure used for implementing the
 Node<E> list of elements that will form the stack */
private static class Node<E> {

public final E item;
public Node<E> next;

public Node(E item) { this.item = item; }

}

public void push(E item) { // pushing on top

Node<E> newTop = new Node<>(item);
Node<E> oldTop;

do {

oldTop = top.get();
newTop.next = oldTop;

}
/* compareAndSet() returns false (and hence the
 loop continues) if oldTop is not the current value
 in top. This happens when someone else has
 modified top. */
while(!top.compareAndSet(oldTop, newTop));

/* In this way, top is updated only when no one
 else updates top in the meantime.

 Remember that compareAndSet() is atomic. */

}

public E pop() { // popping from top

Node<E> oldTop;
Node<E> newTop;

do {

oldTop = top.get();

if(oldTop == null)

return null;

newTop = oldTop.next;
}
while(!top.compareAndSet(oldTop, newTop));

return oldTop.item;

}
}

• It suffers from the ABA problem because this solution doesn't use References, hence a thread
cannot distinguish a new identical top value from the old one

Michael/Scott queue
Sunday, September 24, 2017
19:32

• Non blocking solution for shared queues
• Queue elements: Node<E>

o Queue has a head and a tail reference
• put() Code

public class MSQueue <E> {
private final Node<E> dummy = new Node<>(null);

// Head and tail
private final AtomicReference<Node<E≫ head = new
AtomicReference(dummy);
private final AtomicReference<Node<E≫ tail = new
AtomicReference(dummy);

private static class Node <E> {

public final E item;
public AtomicReference<Node<E≫ next;

public Node(E item) { this.item = item; }

}

public boolean put(E item) {

Node<E> newNode = new Node<>(item);

while(true) {

Node<E> curTail = tail.get();
Node<E> tailNext = curTail.next.get();

if(curTail == tail.get()) { // someone changed the tail in
the meantime

if(tailNext != null){ // someone insterted something in
the meantime

tail.compareAndSet(curTail, tailNext); // update
tail if not yet

}
else { // no one insterted something in the meantime

/* Try to insert the new node. If the operation
 succeeds, update tail */
if(curTail.next.compareAndSet(null, newNode)) {

tail.compareAndSet(curTail, newNode);
return true;

}
}

}
}

}
}

• The AtomicStampedReference is designed to be able to solve the A-B-A problem which is not
possible to solve with an AtomicReference alone.

Message-passing systems
Monday, September 25, 2017
16:59

Logical ports
• Used in systems where memory is not shared
• Nodes use ports (logical ones) (many-to-one channel)
• Information is gathered in a CommunicationEndpoint class

o Message delivered when it reaches local buffer
o Message received when it's passed to the application (CommunicationEndpoint class)
o Bounded-buffer protocol

• Circles are EndPoint objects (logical ports)
• The alternative to these logical ports would be to label every message

• Synchronous calls block the invoker, asynchronous calls let the invoker continue its execution
o Send calls could be both
o Receive calls are always synchronous

• It could be blocking or not-blocking depending on the behaviour on reading an empty buffer

Channel
• Ideal: guarantees both ordering and reliability

Time and global states
Monday, September 25, 2017
10:28

• It defines a unique event order
• Two solutions

o Timestamps based on logical clocks instead of physical ones
o Messages to sync clocks

•
•

o Local synchronization

o

o

o
o

Lamport's timestamps
Monday, September 25, 2017
10:41

•
•
• Counter incrementing rules

o

o Upon exchanging a message
• Sender





• Receiver




o Example

• Properties

o
o

•
• If two timestamps are equal, the process with smaller ID is considered first

Vector timestapms
Monday, September 25, 2017
10:59

•
•

o int V[] = new int[N]; // initialized to 0, one for each node
o Piggybacked to messages

•
o

o

•
• Vector clock updating rules

o
o Upon exhanging a message

• Sender






• Receiver






o Example

• Comparing vector timestamps

o
o
o

• Properties
o
o

• Determing the order by which events occured by looking at vector timestamps is called
casuality checking

• Proof by contradiction


•
•

•
• Contradiction

•

Global state snapshots: Chandy-Lamport's algorithm
Monday, September 25, 2017
11:48

• Used to get a global state snapshot of a distributed system when the algorithm is executed
• Can be executed by everyone at anytime
• Snapshot

o State of each process
o State of each channel (set of messages)

• Each channel has to store its state + the state of its incoming channels
• Assumptions

o No failures
o Unidirectional channels
o There's a channel b/w any 2 processes (strongly connected graph)
o Any process can start the algorithm
o The algorithm can run in background

• Algorithm
o It uses special messages called markers

• State of an incoming channel: set of messages flowing through the channel since the fist
marker was received on the channel

o The initiator
• Stores its state
• Sends a marker over each outgoing channel
• Starts recording incoming messages

o
• If state not stored yet

1. Stores its state
2.
3. Sends a marker over each outgoing channel
4. Starts recording incoming messages

• else
1.
2.

o Ending

•

Request-reply protocols
Saturday, July 22, 2017
15:13

Communication paradigms
• Direct communication

o Sender knows the identity of receivers and vice-versa
o Types

Req/Rep
Request-reply

RPC
Remote Procedure Call

RMI
Remote Method Invocation

 • Object-oriented version of RPC
• These mechanisms are built on top of the send/receive primitives
• Higher level of abstraction for communication

• Indirect communication
o Sender doesn't know the identity of the receiver.
o There's some middleware in between.

• Message Oriented Middleware (MOM)
• Receivers fetch messages from the middleware

o Parties communicating indirectly are called loosely coupled.

onenote:#Request-reply%20protocols§ion-id=%7B469F56A8-1A6C-4CC1-ABDC-DE81D3EF5931%7D&page-id=%7B3194A3F7-A629-4D3A-81D2-CCD2D352BC4F%7D&object-id=%7B5BACFE91-5DD8-4B95-B8B8-BA7F1D06ACE4%7D&1C&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Concurrent%20and%20
onenote:#RPC§ion-id=%7B469F56A8-1A6C-4CC1-ABDC-DE81D3EF5931%7D&page-id=%7BDD9C0F89-3375-4A97-ACA0-F789D49E27B5%7D&end&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Concurrent%20and%20distribuited%20systems/Bechini.one

General functions
Client Server

• doOperation()
• Calls a server's function
• Waits (blocks) until server replies
• Arguments

o Remote reference (server's address)
o Operation ID
o [resource on which to perform the

requested operatoin]
o […]

• Request message fields
MessageType 0 (request) or 1 (reply).

Needed because clients
can act both and server
and clients.

RequestId Unique for each client

RemoteReference Packet generator's
address (in this case the
client's one), useful to
the server

OperationId

Arguments

• Marshalling: the client needs to transform
data to a standard format.

• Performs an unmarshalling of the reply

• getRequest()
• Fetch a client's request
• Unmarshalls the request message
• Request response fields

MessageType 0 (request) or 1 (reply).
Needed because clients
can act both and server
and clients.

RequestId Unique for each client

RemoteReference Packet generator's
address (in this case
the server's one),
useful to the server

OperationId

Arguments Contains the result

• Performs the marshalling before sending
the reply

• sendReply()
• Aruments

o Reply message to be sent
o Client reference

Unrealiability
• Problems

o Packets lost
o Packets re-ordering
o Fail-stop failure: processes may remain crashed foreve

• What can happen
o The doOperation() method could keep waiting forever

• Lost request message: retransmission if no reply is received after a timeout
 Longer than 1 RTT + processing time
 After a number of tries, it should stop: the server could have crashed
 The server should filter request message duplicates, by looking at the RequestId and

RemoteReference pair
• Lost reply message: result caching in order for the server to reply to all duplicate requests

 This is done to improve performance
 Results may be cached both at the server and at another node (like proxies)

The result may vary with the operation type:
• Idempotent: same result if executed more than once (math, HTTP GET)

• Results can be cached
• The HTTP pipelining (palallel requests) is used for static content, hence for

idempotent operations

• Non-idempotent: different results if executed more than once (increments,

timestamps, HTTP POST)
• Results cannot be cached

 Deleting cached results: the server can interpret each successive client request as an
ACK for the previous reply, so it can delete previous cached results.
It should delete all cached results after a limited period of time anyway (the client
could have disconnected)

 The client should filter reply message duplicates, by looking at the RequestId and
RemoteReference pair

RPC
Sunday, July 23, 2017
17:26

What does it stands for
Remote Procedure Call

Paradigm goal
• Extend the procedure call concept to distributed environments
• A client can call a prcedure and obtain a result as if it was calling it locally

Transparency
• Location transparency: the actual location where the computations are performed is hidden to the client
• Access transparency: local and remote procedures must be called in the same way
• Transparency with respect to the concurrency strategies applied to the server
• Transparency with respect to the communiction details between the client and the server

o Send/receive primitives
• Transparency with respect to the actual send/receiver primitives implementations
• Transparency with respect to the underlying platform on which a node is built (OS, programming

language, data un/marshelling, …)

Interfaces
• Why: clients must know which procedures are provided by the server.

o This solution should be standard, even with heterogeneous clients.

• Clients only see interfaces, and not their actual implementation.
o The interface should not be changed: implementations can be

• IDL: Interface Description Language
o Platform-independent, can help solving heterogeneity problems
o Examples: Sun XDR, CORBA IDL, WSDL
o An IDL has a compiler which translates the IDL code into interfaces (in the proper language). This

is transparent to the programmer.

Semantics
• in, out and inout parameters. The latter are included both in the request and in the reply messages.
• RPC is built on top of a request-reply protocol that could or could not be reliable (request

retransmission and duplicate filtering).
Three types of call semantics:

o Maybe: the procedure could be executed or not.

When the underneath protocol is not reliable, the message could not arrive at destination.
The local procedure should return after a timeout

o At-least-once: even an error message is accepted. The operation could be performed more than
once since retransmission without duplicate filtering is used.

o At-most-once: the invoker knows that the result is executed exactly once.
Both retransmission and duplicate filtering are used in this case.

PRC architecture

What needs to be written
• The client program and the service procedure
• Modern compilers do the rest of the job

• Client sends request message

Client process Server process

• Stub procedure
• Actual procedure invoked by the

client in its program
• Hides underlying details
• Client thinks it's executed locally
• Marshals arguments
• Passed to the communication module

• Communication module
• It sends the request message and

receives the reply one
• Deals with low-level communication

details
o Reliability

• Communication module
• Low-level communication details
• It passes request messages to the

dispatcher
• Dispatcher

• Invokes server-side stub procedures
after receiving request messages

• The request message is passed as an
argument to that procedure

• Stub procedure
• It unmarshals request message

arguments
• Calls the service procedure

• Service procedure
• Contains the actual procedure

implementation, called with
unmarshalled data by the stub
procedure

Server replies
o Server

• The service procedure returns the result
• The stub procedure marshals the result, inserting it into a reply message
• The communication module sends the reply

o Client
• The communication module receives the reply message
• The stub procedure unmarshalls the result, returning it to the client program

RMI
Thursday, August 10, 2017
11:24

In general
• Further development of RPC, introducing the OOP abstraction to distributed environments
• RPC was about remote procedures, RMI is about remote objects

o The implementations still makes use of interfaces
o Local and remote object must be placed in the JVM heap

• The local object is called stub or proxy object.
 Their methods act like stub procedures in RPC.

• The target object is called the servant object.
 The client can access the servant thanks to its remote reference:

32 bit 32 bit 32 bit 32 bit 32 bit

IP address Port Object creation time Object # Object interface

• The client only sees a reference to the proxy object
• The remote reference is hidden

• This association between the two objects is done by the Remote Reference
Module

• RMI allows to pass/return arguments both by value and by reference
o By value: an object is first serialized, sent in the request message and then de-serialized.

• These objects must implement the Serializable interface.
o By reference: thanks to remote references.

• Clients don't see them, so they use local references instead:
RMI retrieves transparently the remote one thanks to the Remote Reference Module.
 Local references cannot be used directly bacuse they make no sense in remote locations.

• An object cannot be passed by reference if no remote references are available for that
object.

• RMI uses the At-most-once call semantic.

Initializing a remote object
• The interface

public interface RemoteInterface extends Remote { … }
o Imported as a library both by the proxy and the servant.
o Implemented by the servant object.

• The remote object

public class RemoteObject extends UnicastRemoteObject implements
RemoteInterface { … }
o Export operation: makes the object available for remote access.

A remote reference is then created.
• It can also be done by calling stub = UnicastRemoteObject.exportObject().

This returns a local stub.
o The remote object could also implement the Remote interface directly, but nobody does it.

RMI registry
• Naming service (like DNS) running on some node (whose address is known by everyone) that converts

symbolic names into remote references.

Symbolic name Remote reference

… …

… …

• Runs on port 1099 by default.
• How it can be launched

o From command line
• rmiregistry command
• A reference to it can then be retrieved with

Registry myRegistry = LocateRegistry.getRegistry();
o From code

Registry myRegistry = LocateRegistry.createRegistry(REGISTRY_PORT);

• Bindig: registering a remote reference with a symbolic name.
o Symbolic names are known by the nodes of the system, since they are defined by the

programmer.

onenote:#RMI§ion-id=%7B469F56A8-1A6C-4CC1-ABDC-DE81D3EF5931%7D&page-id=%7B16AA4D12-73F6-49BC-B56B-71D6FCE6459D%7D&object-id=%7B18FEBFF0-DE25-4B21-BBC4-EFF19337CA4D%7D&43&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Concurrent%20and%20distribuited%20systems
onenote:#RPC§ion-id=%7B469F56A8-1A6C-4CC1-ABDC-DE81D3EF5931%7D&page-id=%7BDD9C0F89-3375-4A97-ACA0-F789D49E27B5%7D&object-id=%7B4F1A17B1-0CB1-4724-A411-2D597EC43CA5%7D&46&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Concurrent%20and%20distribuited%20systems

o Two ways
•

myRegistry.rebind(symbolic_name, stub);

 stub = UnicastRemoteObject.exportObject() during the export operation.
• Using the Naming class that follows the Java Naming and Directory Interface (JNDI), which

offers a set of static methods to interact with the RMI registry.

Naming.rebind(registry_address + "/" + symbolic_name, servant);

 registry_address = "//127.0.0.1:1099"
• So a typical symbolic reference could be "//127.0.0.1:1099/Calculator"

 It doesn't need a stub, so it doesn't require this call:
stub = UnicastRemoteObject.exportObject() during the export operation

• Querying

o The lookup operation consists in a request message to the RMI registry, requesting a remote
inference for a symbolic name.

Registry myRegistry = LocateRegistry.getRegistry(registry_address);
stub = myRegistry.lookup(symbolic_name);

or

stub = Naming.lookup(registry_address + "/" + symbolic_name);

• It's the only non-transparent step in the client's code.
o RMI calls can return other remote references and they can accept remote references as

parameters (implicitly).
• So usually the RMI Registry is only used at the beggining for a few objects: to obtain other

remote references, RMI calls could be used instead.

RMI architecture

• Compilers write everything automatically

onenote:#RMI§ion-id=%7B469F56A8-1A6C-4CC1-ABDC-DE81D3EF5931%7D&page-id=%7B16AA4D12-73F6-49BC-B56B-71D6FCE6459D%7D&object-id=%7BE533F72A-3979-40B1-A935-AD36CC72979B%7D&35&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Concurrent%20and%20distribuited%20systems
onenote:#RMI§ion-id=%7B469F56A8-1A6C-4CC1-ABDC-DE81D3EF5931%7D&page-id=%7B16AA4D12-73F6-49BC-B56B-71D6FCE6459D%7D&object-id=%7BE533F72A-3979-40B1-A935-AD36CC72979B%7D&35&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Concurrent%20and%20distribuited%20systems
onenote:#RPC§ion-id=%7B469F56A8-1A6C-4CC1-ABDC-DE81D3EF5931%7D&page-id=%7BDD9C0F89-3375-4A97-ACA0-F789D49E27B5%7D&object-id=%7BFC5512DF-2340-4DFA-AD95-9B6B66FCDCFF%7D&18&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Concurrent%20and%20distribuited%20systems

• Only the client program and the servant methods have to be written manually

Common parts

• Communication modules
o Low-level communication details, like in RPC
o The client one sends RMI requests to the server one, which forwards them to a dispatcher
o The client one also receives reply messages from the server one

• Remote Reference Modules
o Local/remote reference translation with the Remote Object Table. It contains:

• One entry for each servant object held by a node, containing the local reference of the
servant and the remote reference associated to that same servant.
 When an object is exported, a remote reference is created and stored in the table

together with the corresponding local reference.
 When a servant is bind at a Registry, the corresponding remote reference is sent to the

Registry together with is symbolic name.
• One entry for each proxy object held by a node, containing the local reference of the proxy

and the remote reference of the corresponding servant.
When a remote reference is returned for the first time by a lookup or an RMI call:
 A proxy for the corresponding remote object is created and returned to the client
 An entry containing the local reference of the proxy and the corresponding remote

reference is inserted into the table.
o How local and remote references are used

• When a local reference is passed to a method, this Remote Reference Module retrieves the
corresponding remote reference from the Remote Object Table.

• When a remote reference is returned by an RMI call, this Remote Reference Module retrieves
the corresponding local reference from the Remote Object Table.

Client Server

• Proxy or stub
• Local proxy object
• It implements the same interface as

the servant (same behaviour)

• Servant
• Target object2

• Dispatcher
• Receives request messages from the

communication module
• Forwards them to the appropriate method in the

skeleton
• Skeleton

• Invoked by the dispatcher
• Unmarshals the arguments in the request message
• Invokes the corresponding method in the servant
• Marshals the result returned by the servant
• Translates local references into remote ones

thanks to the Remote Reference Module
• Sends the result back to the client through the

Communication Module

Multithread RMI remote invocations
• The programmer only has to guarantee the thread-safety of data structures

• Strategies
o Thread per request
o Thread per connection
o Thread per object

• The strategy is not guaranteed:
o “A method dispatched by the RMI runtime to a remote object implementation may or may not

execute in separate thread.
The RMI runtime makes no guarantees with respect to mapping remote object invocations to
threads.
Since remote method invocation on the same remote object may execute concurrently, a remote
object implementation needs to make sure its implementation is thread-safe."

Class loading
• Non-remote objects are passed by values (Serializable) and remote ones are passed by reference as

arguments and result of RMIs
o If the recipient doesn't have a class of an object passed by value, its code will be downloaded

automatically.
• Java Class Loaders load classes' code at runtime, to avoid big initial overheads.

o They look for .class files and they decompress .jar file, if necessary, to load classes from them.
o The are multiple Class Loaders, hierarchically organized (depending on locations and policies)

• The Class Loader at the root starts searching for it: if it doesn't succeed, it delegates the job
to the next Class Loader in the hierarchy.

• If no class is found, a ClassNotFoundException is thrown.
o When the JVM is started, three Class Loaders are used

• Root: Bootstrap Class Loader: <JAVA_HOME>/jre/lib directory
• Extensions Class Loader: <JAVA_HOME>/jre/lib/ext directory
• System Class Loader: paths specified by the system property java.class.path.

 By default is ., the current directory.
 Can be changed with the -cp flag.

• Other costum Class Loaders
 Added at the bottom of the hierarchy
 They allow class downloading from remote locations
 Network Class Loaders or Remote Class Loaders.

• E.g.: the [Java] Applet Class Loader downloads classes via HTTP.
• RMI Class Loader: searches within the java.rmi.server.codebase system

property
• A SecurityManager must be set up before downloading code from

remote locations

if(System.getSecurityManager() == null)
System.setSecurityManager(new SecurityManager());

Garbage collection
• Only local objects: the JVM's GC periodically checks for objects with no more references and deletes

them.
o Reference counting: a counter keeps track of the number of references for each object.

• This solution does not reveal reference dead-cycles.
o Mark and sweep: objects are seen as graph nodes.

• Marking: every object, starting from the root, is marked.

https://docs.oracle.com/javase/tutorial/ext/basics/load.html

• Sweeping: non-marked/non-reachable objects are destroyed.
• The distributed garbage collection is based on reference counting.
• It works in cooperation with the local GC

o The server's Remote Reference Module holds a data structure containing, for each servant object B,
the set of client's IDs that are holding a reference to B. This set is called B.holders.

o Adding/removing
• When a client receives a remote reference to B, it also implicitly invokes the addRef(B) or

dirty(B) method on the server; the latter will create and send a proxy for B and then it
adds the client to B.holders.

• When a client's GC is up to garbage collect a proxy object for B, it implicitly the
removeRef(B) or clean(B) method on the server; the latter will then remove the client
from B.holders.

o When B.holders is empty, the server's GC will reclaim the space occupied by B unless there are
any local holders.

o Concurrency problem: one unique client could delete an object B while another client is requesting
it.
Instead of keeping B.holders empty, a temporary dummy entry is added until the addRef() of
the other client arrives.

o A client could crash before releasing an object B: a predifined timeout (leasing solution) is agreed
b/w the client and the server.
Clients are then forced to renew their leases before they expire.

Akka
Thursday, August 17, 2017
17:44

Based on the Actor Model
• Model applied to concurrent and distributed systems
• Working units are actors

o They can exchange messages among each other
o They can run an handler once they receive a message

• Messages can be created/forwarded
• New actors can be created
• An activity can be executed

o Deployment
• On the same machine (concurrency)
• On different machines (distribution)

• A service is seen as many activities (processing, storageor communication), each one assigned to an
actor.

The Akka framework
• <<Akka.pdf>>
• Actor can form hierarchies

o The root is called the Guardian System Actor

Failure model

http://akka.io/

Friday, August 18, 2017
14:59

A process/channel that experiments failures is said to be faulty, otherwise it is said to be correct.

Failure types

Distributed algorithms
Friday, August 18, 2017
14:11

Typical problems
• Distributed mutual exclusion
• Leader election
• Reliable multicast
• Consensus
• Spanning tree

Comparison metrics
Traditional algorithms Distributed algorithms

• Time complexity
• Memory complexity

• Number of messages required
(communication is very time consuming)

Distributed mutual exclusion
Friday, August 18, 2017
14:15

Requirements
• Safety: just one node into the critical section
• Liveness: no starvation; eventually all nodes must access the critical section

Techniques
• Token-based
• Non-token-based
• Voting schemes (quorum algorithms)

• Centralized solution

o A Manager or Coordinator node grants access to the critical section.
• Nodes send a request, the manager permits OK and nodes have to Release.
•

o Concurrent requests end up in a requests queue
o The manager is a performance bottleneck
o Not fault tolerant

• The manager is a single point of failure
 If nodes can detect failures, a new manager can be elected

• If a node currently into the critical section crashes, the resource is never released
 If nodes can detect failures, the manager can revoke the permit

• Token-ring

o

o Fully distributed/decentralized
o Not fault tolerant

• When a node crashes, the ring is interrupted
 If nodes can detect failures, they can rebuild it

• If a node currently owning the ticket crashes, the resource is never released
 If nodes can detect failures, the new token can be regenerated by a designated node

that has to be elected with an election algorithm

o Ricart - Agrawala algorithm

o A node sends a request message to every other node and waits for a reply from all of them
• Request messages contain timestamps, to define a total order among the events

o Upon receiving a request, a node:
• If it doesn't want to access the critical section, it replies immediately

onenote:#Leader%20election§ion-id=%7B469F56A8-1A6C-4CC1-ABDC-DE81D3EF5931%7D&page-id=%7BDDD36037-87DD-4941-91D9-E05E09A0503F%7D&end&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Concurrent%20and%20distribuited%20systems/Bechini.one

• If it is in the critical section, it records this pending request and it will reply as soon as it gets
out

• If the node currently wants to access the critical section too, it compares timestamps.
It replies if it loses, otherwise it will enter the critical section.

•


• Crashing nodes won't reply the to requesting one

 The requesting node could decrement pendingReplies whenever it detects a failure
• Pseudo code

Leader election
Friday, August 18, 2017
14:42

• Processes have an unique ID
• Must be fault tolerant
• Steps

1. Find the leader: process with highest ID
2. Inform all other nodes about it

(processes stores the leader ID, null if there's still no leader)
• Requirements

o Safety: all correct processes must agree on the leader ID
o Liveness: eventually, the election will end

Chang & Robert's algorithm
o Ring-based election

o Assumptions

• There are no message losses
• There are no process crashes (not fault-tolerant)

 Failures can be detected with pings with timeouts by the Failure detector
• The other node must not reply for a given number of times before considering it

dead.
• If the other node is not actually crashed (e.g.: huge network delays so it's ok to

consider it dead), a node will keep ignoring future messages coming from that
node.

•
o Each process can be in 2 states:

• PARTECIPATING
• NON-PARTECIPATING

o Phases
• Phase 1

 Initially, all nodes in the NON-PARTECIPATING state
 A nodes wants to start an algorithm run

• It sets its state to PARTECIPATING
• It sends an ELECTION message with its UID to its successor

 A NON-PARTECIPATING node, upon receiving an ELECTION message
• Switches its state to PARTECIPATING
• Forwards the ELECTION message with the highest UID among its own and the

one contained in the message
 A PARTECIPATING node, upon receiving an ELECTION message

• Forwards the message if the UID contained in the message is greater than its
own

• Ignores it if it is less than its own UID
• There's another election run, hence there's more than one ELECTION

message
• Becomes the leader if the UID contained it's equal to its own

onenote:#Failure%20model§ion-id=%7B469F56A8-1A6C-4CC1-ABDC-DE81D3EF5931%7D&page-id=%7BDA8985C5-E171-4A3F-BA89-5A0367A751BB%7D&object-id=%7BB793263A-B3E8-41CD-AAE2-761370302468%7D&26&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Concurrent%20and%20distribuit

• Sets its state to NON-PARTECIPATING
• Sends a LEADER message containing its own UID
• Phase 2 begins

• Phase 2
 A non-leader node, upon receiving a LEADER message

• Sets its state to NON-PARTECIPATING
• Stores the leader UID
• Forwards the message

 The leader node, upon receiving the LEADER message
• The message is not forwarded
• The algorithm terminates

o
• Worst-case scenario: the algorithm starter is right next to the leader-to-be

 Phase 1

•

•

 Phase 2
•


• Best-case scenario: the leader-to-be starts the algorithm



Bully algorithm
o Each process knows the UID of each other
o Processes ordered from left to right, with increasing UID

ELECTION message

ANSWER message

ELECTION message

ANSWER message

LEADER message

o The process with the highest UID is the leader, so in this case, the last one in black
o When it crashes (that's why it's black), the other processes start a run of the algorithm upon

detecting its failure
• "Who is the leader?": A process sends an ELECTION message to those processes with larger

UID than its own
• Two possible outcomes

 "Not you!": These processes reply with an ANSWER message
• These processes start an algorithm run
• The requesting process waits for the leader's ID (light blue state)

 No reply arrives within a timeout
• The process is then the new leader
• It warns everybody by broadcasting a LEADER message

o A process with the largest UID might enter the system: it imposes itself as the new leader (bully)
o

• Worst-case scenario: the process with the smallest UID starts an algorithm run.
 First run:

•
•

 Second run:
•
•





Reliable multicast
Tuesday, August 22, 2017
15:55

• multicast(g, m): sending a message m to a group g
• Assumptions

o Reliable send/receive operations
• Acks are needed

o Processes may crash
o Sender belongs to g

• Multicast types
o Basic multicast (B-multicast(), B-deliver())

• Validity: every correct process in g will deliver the message if the multicaster doesn't
crash

o Reliable multicast (R-multicast(), R-deliver())
• Integrity: delivery is performed at most once
• Validity: if a correct process multicasts a message, it will also deliver it
• Agreement: if a correct process delivers the message, then all other correct processes in

the group will eventually deliver it

Implementations
• Basic multicast

o Built on top of send/receives primitives
 Multicasting Delivering

Pseudo code • B-multicast(g, m) {
// single send operations
for(p in g) send(p, m);

• B-deliver(m) {
receive(m);

}

}

Notes • Too many acks could arrive: some of them
could be dropped, causing retransmission (akc
implosion)
 Messages could be sent following a

spanning tree topology
 A multicast service provided by the

underlying network could solve the
problem

Reliable multicast
o Built on top of the basic multicast

 Multicasting Delivering

Pseudo
code

• R-multicast(g, m) {
B-multicast(g,
m)

}

• R-deliver(m) {
B-deliver(m);

if(/* only if m was not received

before (otherwise the
multicast would last
forever) */) {
B-multicast(g, m);
R-deliver m

}
}

Notes o Basic multicast might crash during its
execution, some processes might not
receive the message (agreement property
not satisfied)
• Messages could be re-transmitted by

other processes before they deliver
them

• The last R-deliver m pseudo-
statement indicates the message
delivery completion to the
application
 Duplicates

• Can be filtered
o

Ordering guarantee
• Ordering semantics

o Partial ordering
• Relation between the order in which messages are sent and the order in which they are

received
 Send operations might be concurrent, so there's no ordering constraint at the

receiver

 Not all messages are sent by the same process
 Some multicasts are concurrent (not ordered by happened-before)

• Types
 FIFO ordering (order within one sender): If a correct process issues multicast(g, m)

and then the same process issues multicast(g, m’), then every correct process that
delivers m’ will deliver m before m’.
• Solution: hold-back queue with sequence numbers

 Causal ordering (order within multiple senders): If a correct process issues

multicast(g, m) and then another correct process in g issues multicast(g, m’)
(multicast(g, m) → multicast(g, m’)), then any correct process that delivers m’ will
deliver m before m’.
• Violation example with one-to-one message

P3 delivers m' before it delivers m.

• Solution: hold-back queue with vector timestamps
• Mantained by the message service at each node, for each process

•
• For each process, each entry record the most-up-to-date value of the

state counter (updated during both multicast sending and receiving)
delivered to the application process, for the process at that position

•

•

•

o Total ordering (): If a correct process delivers message m before it delivers m’, then any other
correct process that delivers m’ will deliver m before m’.
• Stronger semantic: it requires messages to be received in the same order by all

processes.
• Solution: agreed sequence numbers, unique all over the group


•
•



 …

Consensus
Thursday, August 24, 2017
12:13

• Processed need to agree on some value
• They have a set of proposed values

o findDecision(<list of proposed values>)
• Must return the same value for all processes
• Returns a special value (no decision) in parity cases

o Building it
o Each process proposes a value, broadcasts it and keeps track of other proposed values

• It has to be fault tolerant
o Assumption: system is synchrounous

• Processes take a bounded time to complete a communication step.
This allows failure detection, by looking at processes that don't reply within this bounded
known time.

• Status
o Decided
o Not decided

• Requirements
o Termination or liveness: eventually, each correct process sets its decision variable in a bounded

period of time
o Agreement: same decision value for all correct processes
o Integrity: if all correct processes proposed the same value, then any correct process in the decided

state has chosen that value

Solution
•
•
• Round

o Initially, processes multicast only their own proposed value
o Each process multicasts a new proposed value everytime a new one is received

• At the beginning, each process' list contains only its proposed value
o Driven by timeouts: since the system is synchronous, each round has a deadline, after which each

process that has not responded is certainly crashed.

o
• Necessary to cope with crashes
• Only 1 round is necessary if no process crashes
• Additional rounds, one for each crashed node, allows processes to exchange their values

again, this allowing them to retrieve the missing values (by removing those values which are
not received again).

• Algorithm
o

// New values broadcast

// Preparing the new set of values

while(<in round r>) { // driven by timeouts

}

// Next round
r++;

o

o Consensus is reached
•
•

• Effectiveness proof by contradiction

o

o There might be a value which is present in the second set, but not in the first one

o

o

o

o

The Byzantine Generals problem
Thursday, August 24, 2017
16:56

• Consensus problem with Byzantine processes
• Faulty processes could send different values to different processes
• Assumption: the system is still synchronous
• Requirements

onenote:#Failure%20model§ion-id=%7B469F56A8-1A6C-4CC1-ABDC-DE81D3EF5931%7D&page-id=%7BDA8985C5-E171-4A3F-BA89-5A0367A751BB%7D&end&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Concurrent%20and%20distribuited%20systems/Bechini.one

o Termination: eventually each correct process sets its decision variable
o Agreement: when the algorithm terminates, all processes agree on the decision
o Integrity: if the commander is correct, then all correct processes decide on the value that the

commander proposed
• Faulty lieutenant example

o
o
o Scheme

o L1 cannot understand which message is correct, except for digitally signed messages
o

•

o

o Two rounds (like the figure above)
The commander sends a value to each of the lieutenants
Each lieutenant sends the received value to its peers

o Each lieutenant receives
• A value from the commander
•


o Faulty commander

o Faulty lieutenant

o In either case, a correct lieutenants only needs to apply a simple majority function to the set of

values it receives

The FLP restriction
Friday, August 25, 2017
12:22

• Consensun problem in asynchronous systems
• FLP restriction statement or impossibility result: "It's impossible to find an algorithm that

guarantees to reach consensus in an asynchronous system, in a finite expected time, if at least one
process may crash"
o This doesn't mean that processes can never reach distributed consensus in an async system if

one of them is faulty (it says "guarantees")
o In practice, this has been done successfully because processes fail while reaching an

agreement quite rarely. Systems are instead almost always partially synchronous, instead of
asynchronous.

• Practical approaches
o Fault masking

• Crashed processes restart
• Every process saves in a persistant storage all the infos permitting it to recover its state

and continue its execution
• Processes just take longer time to respond

o Failure detection
• With pings
• A failure must be announced to other processes
• False positive failures won't be handled, by making the failure fail-silent, i.e. by

discarding further messages sent by the excluded process
• Consensus algorithms allow processes to re-join the computation group

o Randomization
• If failures are introduced by attackers, randomized messages can avoid this

Paxos
Monday, August 28, 2017
09:26

• Fault-tolerant consensus algorithm

o It allows to update data in eventually consistent systems
o It's repeated every time there's an update or periodically

• Works with replicated data
• Roles

o Proposing leader: it proposes new data values
o Acceptor: it votes to accept a proposed value
o Learner: it will be informed of the voting outcome

• A process can assume more than one role
•
• Algorithm

o

•

They will include:
• The last accepted value val'
• The corresponding sequence number sn'

•

• The same original SN sn
• The value to be accepted val*

 It might be totally new or equal to val'

onenote:#CAP%20theorem%20and%20eventual%20consistency§ion-id=%7B469F56A8-1A6C-4CC1-ABDC-DE81D3EF5931%7D&page-id=%7BA8B312AA-A62F-42BE-8A00-CA1B35BBB375%7D&end&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Concurrent%20and%20distribuited%20systems/Bechin

5.

• The new value val* is now considered accepted, and it's communicated to the learners

Distributed commit
Friday, August 25, 2017
12:49

Problems
• Faults
• Replica management: process of keeping track of where portions of a (very big) data set can be found

Types
1. Distributed transactions

o Transactions on data distributed in different locations
o Nodes must

• Complete the transaction correctly
• Agree on the final outcome
• Agree to commit the transaction, making it permanent

 Otherwise the transaction should be aborted by everyone
 This is an agreement problem (commit or abort transaction)

2. Data replication
o For availability (despite server failures)
o Requirements

o Consistency among replicas (edit propagation)
o Modifications agreement

• It might happen that different server are serving different clients at the same time
(proximity or load balance)

• Clients may ask for concurrent modifications
• If modifications are in conlict, one of them may be aborted

 This is also an agreement problem (commit or abort modifications)

http://toolkit.globus.org/toolkit/docs/2.4/datagrid/replica-management.html

2-phases commit
Friday, August 25, 2017
12:53

• For commit or abort a transaction (binary consensus)
• Not decentralized

o Proposers are called cohorts (or Resource Managers RMs)
o A coordinator (or Resource Coordinator RC)

• Gathers votes from all proposers
• Decides (commit/abort)
• Informs all cohorts

• 2 phases

1. Voting phase
• The coordinator asks a vote (value

agreement)
• Cohorts send their vote ("yes/no",

commit/abort)
2. Decision phase

• The coordinator checks that
everyone voted

• The coordinator decides and sends
the result to everyone (commit if
everyone voted yes)

•
• Requirements

o Consistency
o Fault tolerance

• By a cohort
 Before voting: coordinator aborts for safety reasons
 After voting: no action is needed

• If it comes back, it needs to catch-up the coordinator reply

• By the coordinator

 Before receiving all replies: no commit/abort send
• RMs abort on timeout (TOUT)

 While sending the response, some cohorts will keep waiting for it.

A new coordinator will replace the faulty process thanks to fault masking.
• This could cause high latency
• The 3-phases commit algorithm resolves this problem

onenote:#The%20FLP%20restriction§ion-id=%7B469F56A8-1A6C-4CC1-ABDC-DE81D3EF5931%7D&page-id=%7B2802C1ED-1EC5-4E62-BCBA-57BFE0BB6496%7D&object-id=%7B18C911EE-5515-4A79-8046-C00ACC11DA8E%7D&48&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Concurrent%20and%20di
onenote:#3-phases%20commit§ion-id=%7B469F56A8-1A6C-4CC1-ABDC-DE81D3EF5931%7D&page-id=%7BE4058566-AC2E-44AA-A38E-1A9413511A7F%7D&end&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Concurrent%20and%20distribuited%20systems/Bechini.one

3-phases commit
Friday, August 25, 2017
14:33

• It avoids processes to wait endlessly for a response in case the coordinator crashes while sending
responses, by adding an intermediate phase. Each cohort will be able to take over as a coordinator.

• Voting phase
1. The coordinator asks for votes
2. Cohorts reply (yes/no)
3. The coordinator computes the result

(let's assume it's a commit)
• p2c phase

4. The coordinator sends a prepare-
to-commit (p2c) message to all
cohorts
o This message informs cohorts

about the outcome of vote,
but it doesn't allow them to
commit yet

5. When cohorts receive the p2c
message, they reply with a ready
message

• Commit phase
6. Upon receiving all the ready

messages, the coordinator orders all
cohorts to commit

7. Cohorts commit once they receive
that order

• Advantage: if the coordinator fails after the p2c phase, anybody can replace it with an election
o This reduces latency
o

• Fault tolerance
o By a cohort

• Before voting: transaction is aborted
• After voting: no action is needed

o By the coordinator
• During the voting phase: another node replaces it
• During the p2c phase: another node replaces it

 If the new coordinator had already received a p2c message, it broadcasts the p2c
message once again

 Otherwise, the new coordinator will query other cohorts
• If any cohort has seen a p2c, it will complete the protocol by sending out all

missing p2c and commit

• Otherwise, the new coordinator can either

• Abort
• Trigger another vote

• During the "order sending phase": it means that all cohorts have received a p2c
message.
A new coordinator can then be eleceted, and it just has to send orders.

2PC vs 3PC
Monday, August 28, 2017
11:10

2PC
• Tolerates RMs that fail-stop
• Cannot tolerate RC (Resource Coordinator) failures

3PC
• Tolerates RC failures
• Less efficient w.r.t. 2PC (5n vs 3n messages)

Both
• Cannot tolerate nodes that fail-recover
• Cannot tolerate network partitions
• All nodes need to answer: bad with large networks with frequent failures

Network partition problem
Friday, August 25, 2017
14:47

What is it
• Nodes cannot distinguish between node failure and link failure
• If a link connecting two network partitions fails, two separated subgroups are formed

o These two subgroups could become inconsisent with each other

Consistency protocols
• Assumption: partition will eventually be repaired
• Modifications made within a partition should guarantee that data won't be in conflict when the partition

will be repaired
• Two ways

o Optimistic approach
• Nodes within any partition can still modify data
• Conflicts will be resolved later

o Pessimistic approach
• Only one subgroup (which hold the quorum) is allowed to modify data
• There will be no conflicts then

CAP theorem and eventual consistency
Monday, August 28, 2017
09:14

CAP theorem statement
• It's not possible to guarantee at the same time

o Consistency
• Strong consistency is not mandatory.

Weak consistency models are used instead, like the eventual consistency one.
o Availability
o Partition tolerance

Eventual consistency model
• High availability
• They tolerate faults and network partitions
• If no new updates are made to a given data item, all accesses to that item will eventually return the last

updated value
o Replicas tend to converge to the most updated value

• BASE semantic:
o Basically Available
o Soft state
o Eventual consistency

• They're not ACID
o Atomicity: commit or abort
o Consistency: always
o Isolation: each transaction executes as if isolated
o Durability

• There must be a replica convergence solution

AWS DynamoDB
Properties
• NoSQL service
• Single-digit ms latency
• Guaranteed throughput
• Elastic table growth, no size limit
• Fault (hw and sw) tolerant
• CAP theorem

Consistency (eventual consistency)
Availability
Partition tolerance

Characteristics
• Table are split into partitions
• Data model

o Table
i. Collection of items

ii. Composed of attributes

onenote:#CAP%20theorem%20and%20eventual%20consistency§ion-id=%7B469F56A8-1A6C-4CC1-ABDC-DE81D3EF5931%7D&page-id=%7BA8B312AA-A62F-42BE-8A00-CA1B35BBB375%7D&object-id=%7BB94838CC-84D4-4338-B3D5-34AF6A591767%7D&4D&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/

o Primary key
• Partition hash key
• Optional sort key

• At table creation time, the user must specify
o RCU: Read Capacity Unit

• Consistent read < 4KB
• 2 eventually consistent reads < 4KB

o WCU: Write Capacity Unit
R/Ws beyond this limits are considered as errors.
These values are dynamic.

Operation tasks
• Primary tasks

o Up = available
o Healty = satisfying functional & non-functional requirements

• Secondary tasks
o Root-cause analysis (RCA)
o Feed information back to developers
o Operation handling automation

Web services
• Client/server via HTTP
• Web servers run web applications

Multi-tier architecture paradigm: why
• Different layers (on different machines) for different functionalities
• Advantages of deploying different layers on different machines

o High specializatoin for higher performance and scalability
o It allows a single machine to save resources for a single functionality
o Faults won't deprive a system of multiple functionalities (more availability)
o Maintainability

The three-tiers architeture
• Layers

o Front-end presentation
• Web servers
• It handles content to be displayed to the client, e.g. web pages

o Middleware application logic or business
• Application servers
• Contacted by web server: they submit tasks and retrieve results

o Back-end data storage or persistence or data back-end
• Database server, DBMS
• Information storing and retrieval

MVC pattern
What is it
• It stands for Model View Controller
• Used by the JavaServer Faces technology
• It's a software architectural pattern that separates the internal data representation from the way it's

presented to the client

o Model: internal data representation
o View: data user representation
o Controller: it defines how the user interaction with the view modifies the model

• It executes the proper logic to update the model upon receiving commands from the user

Java servlets
Monday, August 28, 2017
11:35

Internal architecture
• Apache Tomcat is a web server used for Java web applications

o It's included in Java EE
• It uses port 8080 instead of 80 by default
• One thread per request

o All data structures accessed by a Servlet must be thread-safe, since it can be accessed concurrently
• Container-based structure

o This structure is defined by developers in a XML file

• Contexts, instead, are defined by placing a web application project directory in a specific
Tomcat directory

Components
o *: there might be multiple instances of it
o Server

• Tomcat server instance
o Connectors

• They receive client requests (for instance by HTTP) and turn them into special objects with
propers interfaces (like HttpServletRequest)

o Service
• It exposes connectors
• It receives request objects from connectors
• It passes these request objects to the engine

o Engine
• Request-processing
• It examines HTTP headers to determine to which web application it should pass the request

(multiple websites on the same server)
o Host

• Web application, which contains multiple applications called contexts
• It allows multiple virtual servers to be configured on the same physical machine and to be

addressed by different IP addresses or host names
 In Tomcast, they are addressed by different fully qualified host names
 Different website on the same server

• Clients' requests will contain both the IP address and the hostname to distinguish
them

• The engine inspects the HTTP header to determine which host is being request
o Context

• Every host has multiple applications (contexts) having different names
• It contains the real resourced exposed by the web service

 Static HTML pages

onenote:#Java%20servlets§ion-id=%7B469F56A8-1A6C-4CC1-ABDC-DE81D3EF5931%7D&page-id=%7B51CE75D5-96C3-440B-B7AD-FBB75E70413C%7D&object-id=%7B83D82E43-0CB5-4415-9BF3-B47399809228%7D&A7&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Concurrent%20and%20distribuit

 Servlets: "Java program that extends the capabilities of a server, commonly used to
implement applications hosted on web servers"

 JavaServer Pages (JSP): "Technology that helps developers create dynamically
generated web pages based on HTML, XML, etc.
Similar to PHP and ASP, but it uses Java.
It requires a compatible web server with a servlet container, such as Apache Tomcat or
Jetty.".

o Valves
• They intercepts requests and process them before they reach their destination
• Commonly used to log requests

URL mapping
• The web.xml file allows to

o Define servelts
o Map servlets to names

• Fully qualified name example: http://www.aaa.com:8080/context-path/myServlet
• A Servlet can be mapped to more than one URL

Basic API
• Servlets are special Java objects used to implement a web service

o CDS_07_WEBSxaERVER lab
• import javax.servlet

o The Servlet interface must be implemented by the class that will define our Servlet object
• init()
• The service(ServletRequest req, ServletResponse res) method

implementation consists in computing a responde res for the client
• destroy()

o Alternatively, a Servlet object can extend the GenericServlet abstract class (that still
implements the Servlet interface, of course)
• init() and destroy() are already defined, but they can be overwritten, if necessary
• The service() method still has to be implemented
• This class is extended by the HttpServlet class, which is for HTTP services

 This is normally used for Servlets
 The service() method needs not to be implemented anymore
 Extending the HttpServlet class forces the developer to implement one callback

method per each HTTP request type
• doGet(HttpServlet req, HttpServletResponse res)
• doPost(HttpServlet req, HttpServletResponse res)
• doHead(HttpServlet req, HttpServletResponse res)
• …
• They're callback methods because they're invoked by the

HttpServlet::service() method
o ServletRequest and ServletResponse are interfaces representing generic request and

responses
• HttpServletRequest and HttpServletResponse are extensions

• Lifecycle

https://en.wikipedia.org/wiki/Java_servlet
https://en.wikipedia.org/wiki/JavaServer_Pages
onenote:#Java%20servlets§ion-id=%7B469F56A8-1A6C-4CC1-ABDC-DE81D3EF5931%7D&page-id=%7B51CE75D5-96C3-440B-B7AD-FBB75E70413C%7D&object-id=%7B22EB027E-2C7B-4E92-AF58-9968ED221E70%7D&EF&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Concurrent%20and%20distribuit
onenote:https://d.docs.live.net/653d34e43499e34c/Documents/Programmazione/Vecchio.one#Interfacce%20e%20classi%20abstract§ion-id=%7B52ED4F12-7B21-4423-8F7D-5E68CCA669EC%7D&page-id=%7B7B47C0D4-30C9-4050-B417-51B7570487C8%7D&end

o Entrypoint: NOT-EXISTING state

• Accessing information stored in the input ServletRequest variable
o String getParameter(String name)
o String[] getParameterValues(String name)

• Writing in the response object ServletResponse res
o PrinterWriter out = res.getWriter(); // gets an output stream
o out.println(); // write HTML code of the response page

Sessions
• HTTP is stateless
• It's useful to mantain information about clients

o They can be mantained thanks to sessions
o It has a lifetime

• The server needs to associate a session ID to every client.
There are more ways to do that:
o The client can store its session ID and include it in all successive requests, thanks to coookies

• Most used technique
o With URL rewriting, a unique session ID is attached to each URL sent to the client browser
o The server can put the identifier in a hidden filed of an HTML form, which is returned from the

client in the body of its next request
• HttpSession interface

o req.getSession() gets the session: it creates a new one if no session exists yet
o Storing info about the client: setAttribute(String name, Object value) method
o Retrieving info about the client: getAttribute(String name) method

JavaServer Pages (JSP)
• It would be preferable to decouple HTML from Java code, instead of writing HTML code into a

ServletResponse object with the out.println() method
• JSP is a template system
• JSPs are translated into Servlets when compiled
• JSP is mainly made up by HTML code, with some embedded Java in it

Pros Cons

onenote:#Java%20servlets§ion-id=%7B469F56A8-1A6C-4CC1-ABDC-DE81D3EF5931%7D&page-id=%7B51CE75D5-96C3-440B-B7AD-FBB75E70413C%7D&object-id=%7B818D3F9C-CF14-4343-A6DF-0C3CCA23880C%7D&33&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Concurrent%20and%20distribuit
onenote:#Java%20servlets§ion-id=%7B469F56A8-1A6C-4CC1-ABDC-DE81D3EF5931%7D&page-id=%7B51CE75D5-96C3-440B-B7AD-FBB75E70413C%7D&object-id=%7B818D3F9C-CF14-4343-A6DF-0C3CCA23880C%7D&33&base-path=https://d.docs.live.net/653d34e43499e34c/Documents/Concurrent%20and%20distribuit

• Flexible
• Maintainable

• Servlets have more control over requests handling

Apache Tomcat: configuration
• Directory hierarchy

o Folders: during development
o Web ARchive (WAR): during deployment (can be done by NetBeans)

• Document root

o HTML, JSP files, static content, …
o For example, the <document root>/index.html file can be found on http://www.aaa.com:8080/context-

path/index.html
• <document root>/WEB-INF/web.xml is the deployment descriptor, an XML config file that defines

the application structure (hostname, context name, Servlets, resources names, …)
o Example

http://www.aaa.com:8080/context-path/index.html
http://www.aaa.com:8080/context-path/index.html

o A Servlet can be mapped to more than one url by using the * character or by inserting more <url-

pattern> tags containing various URLs.
• <document root>/WEB-INF/classes/: Java class files and Servlets
• <document root>/WEB-INF/lib/: libraries
• Web application deployment: placing the folders/WAR in a subdirectory into the webapps Tomcast

folder
• The context path is the path from the webapps Tomcast folder to the web application document root
• Tomcast common library folder: common/lib/, contains libraries that need to be shared among

different applications
o It contains the javax.servlet and javax.servlet.http packages

Servlet filters

• Interception is a mechanism to
o Preprocess requests before they arrive to the Servlet
o Postprocess responses before they're sent to the client

• Example: pages visible only to authenticated users

o Filters intercept requests demanding critical URLs

• Actually filters can help any kind of resource, not just Servlets

o This avoids the Servlet to manage authentication problems
• Filter interface

o init()
o doFilter(ServletRequest req, ServletResponse res, FilterChain chain)

• Implementation example:
void doFilter(ServletRequest req, ServletResponse res, FilterChain chain)

 throws IOException, ServletException {
// preprocessing code here

// calls the service() method of the corresponding Servlet
chain.doFilter(req, res);

// postprocessing code here

}

o destroy()
• Declaring filter in web.xml

o Filters can be associated with any resource, not just Servlets
o The wildcard * can be used

Java annotations to avoid specifying web.xml
• This has to be specified before the Servlet class

o Short annotation for URL mapping only (no name and parameters)

• Default name will be MyServlet1
• No parameters

• web.xml will be automatically produced by the compiler

Java EE
Tuesday, August 29, 2017
10:14

• Java SE + APIs for developing multi-tier and distributed architectures, web services and for persisent

data storage
• Java EE includes

o Servlets
o Enterprise JavaBeans
o Java Message Service

• Concurrency, distribution/communication, security, data persistency… all transparent

Components
• They are implemented by Java Objects, but:

Object Components

Abstraction of a real-world entity Unit which takes some responsibilities

• Components may require another component to carry out a service (requested and provided interfaces)

• Good for separation of concerns

Application servers
• Java EE runs on application servers
• Application servers are a super-class of web servers

Web servers Application servers

• Reply to clients via HTTP • Exposes business logic to clients with any protocol,
including HTTP

• GlassFish
o Included in NetBeans + Java EE installation package
o GUI configurations

• Access credential
• Security
• Database connections
• Application deployment
• Add resources like Java Message Service connection factories

EJBs
Monday, September 25, 2017
18:23

• "Enterprise Java Beans"
• Server-side software components that encapsulate business logic of an application

o Components: EJBs are objects with responsibilities
o EJBs can provide interfaces to other EJBs

• EJBs types
o Session EJBs

• Triggered on method invocation
o Message-driven EJBs

• Triggered by a message reception event (Java Message Service)
o Entity EJBs

• Used to manage data persistence
• Replace by the Java Persistence API (JPA), which interacts with DBMSs and manages

data persistance

	Summary
	Types
	Definitions
	Concurrent activities
	Different types of concurrency

	Parallelized programs' speedup
	Shared-memory systems

	Partially Ordered SET (POSET)
	Precedence graph
	Mutual exclusion
	What it means

	What does it do
	Target
	General lock acquisition scheme

	Solution 1: boolean variable
	Solution 2: flags
	Solution 3: turns
	Solution 4: Peterson's solution
	Producer-Consumer problem
	Javadoc's example
	Bounded buffer example

	Synchronized vs Condition variables
	What are they
	In Java

	Bounded buffer example
	Packages
	Lock interface

	Pre-existing locking solutions
	Examples
	Java Collection framework
	Iterating over a Collection
	Reader-Writers problem (Java's ReadWriteLock)

	Frameworks
	Logical ports
	Channel

	Communication paradigms
	General functions
	Unrealiability
	What does it stands for

	Paradigm goal
	Transparency
	Interfaces
	Semantics

	PRC architecture
	What needs to be written
	In general
	Initializing a remote object
	RMI registry

	RMI architecture
	Multithread RMI remote invocations
	Class loading
	Garbage collection
	Based on the Actor Model
	The Akka framework
	Failure types
	Typical problems

	Comparison metrics
	Requirements

	Techniques

	Implementations
	Ordering guarantee
	Solution
	Problems

	Types
	2PC
	3PC
	Both
	What is it

	Consistency protocols
	CAP theorem statement
	Eventual consistency model
	Properties

	Characteristics
	Operation tasks
	Multi-tier architecture paradigm: why

	The three-tiers architeture
	What is it

	Internal architecture
	Components
	URL mapping
	Basic API
	Sessions
	JavaServer Pages (JSP)

	Apache Tomcat: configuration
	Servlet filters
	Java annotations to avoid specifying web.xml
	Components
	Application servers

